In order to monitor battery readings, the SCADA system generally establishes direct communication with the BMS. Additionally, there may be a need or advantage for the SCADA system to communicate with DC-DC converters, inverters, and auxiliary meters in order to effectively manage the BMS.
The main clientele for FTM installations consists of utilities, grid operators, and renewable developers who seek to address the sporadic nature of renewables, offer grid stability services, or avoid expensive investments in their grid. Typically, the BESS providers in this sector are either vertically integrated battery manufacturers or prominent system integrators. They will set themselves apart based on factors such as price and scope, dependability, their history of successfully managing projects, and their aptitude for creating energy management systems and software solutions for grid optimization and trading.
For further details, technical assistance, help with resolving complaints, and additional support, make contact with our customer care department.
According to our analysis, the current situation has presented a notable prospect. Our findings indicate that over $5 billion was allocated to BESS investments in 2022, marking an almost threefold rise compared to the previous year. It is anticipated that the worldwide BESS market will achieve a valuation ranging from $120 billion to $150 billion by 2030, surpassing its current size by more than twofold. However, this market remains fragmented, posing challenges for numerous providers who are uncertain about their competitive positioning and strategies. It is crucial to seize this moment and determine the prime areas of growth in the swiftly advancing BESS market, while also making the necessary preparations for them.
In the subsequent section of the C&I sector, there exists critical infrastructure comprising telecommunication towers, data centers, and hospitals. Within this specific subset, temporary backup power is typically facilitated by lead-acid batteries through an uninterruptible power supply during instances of outages until the resumption of regular power or activation of diesel generators. Alongside the substitution of lead-acid batteries, lithium-ion BESS products offer a potential solution to reduce dependence on diesel generators, which are less eco-friendly. These products can be seamlessly integrated with sustainable energy sources like rooftop solar. Moreover, in specific instances, surplus energy stored in a battery could enable organizations to generate income through grid services. A number of telecommunications companies and proprietors of data centers are currently transitioning to BESS (Battery Energy Storage Systems) for their uninterrupted power supply needs, recognizing the added advantages that BESS offers.
Anticipated advancements in utility-scale Battery Energy Storage Systems (BESS), which presently represent the majority of new capacity each year, are projected to witness a rapid growth rate of approximately 29 percent annually until the end of this decade. This trajectory positions utility-scale BESS as the fastest-growing segment among the three. Projections indicate that by 2030, annual utility-scale BESS installations could range from 450 to 620 gigawatt-hours (GWh), potentially securing up to a 90 percent market share of the total industry during that period (Exhibit 2).
To obtain a summary of the functioning of BMS and EMS, please refer to our publication on BESS and grid assistance. In this section, we will delve into the integration of BESS with SCADA.
Battery Energy Storage Systems (BESS) retain energy during periods of excess generation or low demand and subsequently release it during periods of reduced generation or high demand. Similar to any energy source within a solar PV facility, the operation of BESS necessitates constant monitoring and management. This is accomplished through three different systems.
Large-scale deployments of BESS are already underway, with the notable involvement of FlexGen company in a project aiming to establish a BESS capacity of six GWh in due course. A different United States-based company, involved in various industries including energy, has already exceeded that milestone by achieving 6.5 gigawatt-hours (GWh) in deployments of battery energy storage systems (BESS) in the year 2022. A significant portion of the current influx of funding towards BESS is being allocated to services aimed at enhancing the flexibility of energy providers, such as firm frequency response. Over time, the main source of BESS (Battery Energy Storage System) expansion will arise from the development of solar parks and wind farms, requiring batteries to manage their storage requirements for shorter durations.
Given these circumstances, it is highly probable that sodium-ion batteries will gain a larger portion of the BESS market. In fact, it is anticipated that a minimum of six manufacturers will commence production of sodium-ion batteries in 2023. Evidently, healthcare providers will need to make choices regarding which technology to invest in. Integrators may consider configuring their systems in a manner that simplifies the transition to sodium-ion batteries once they become readily accessible.
The BMS encompasses the HMI, which denotes the operational state of the BMS (such as charging, discharging, or idle), desired levels of real and reactive power, limits for state of charge (SOC), alarm information, and input from control parameters.
The market for BESS (Battery Energy Storage Systems) is currently experiencing a rapid phase of growth and development. Companies that fail to take action at this pivotal moment risk losing out on significant opportunities. Success in this market will be determined by four essential factors that companies must demonstrate. As the energy transition gains momentum, these victors will generate value in an emerging market.
Critical readings that are transmitted from the batteries/stacks comprise state of charge (SOC), electrical current, voltage, temperature, as well as the quantity of interconnected stacks and alarm indicators. In the case of battery issues such as excessive heat or failure to charge adequately, the SCADA system has the capability to notify plant operators through an alarm displayed on the human-machine interface (HMI).
From a technological standpoint, the primary factors that customers prioritize when it comes to batteries are cycle life and cost-effectiveness. Presently, lithium-ion batteries are prevailing because they fulfill customer requirements. In the past, the dominant choice for battery chemistry was a nickel manganese cobalt cathode. However, lithium iron phosphate (LFP) has emerged as a more cost-effective alternative, surpassing it in popularity. (Customers of lithium iron phosphate are willing to acknowledge that LFP may have certain limitations compared to nickel batteries, particularly in terms of energy density.) Nevertheless, the scarcity of lithium has led to the exploration of various intriguing and promising battery technologies, with a particular focus on cell-based options like sodium-ion (Na-ion), sodium-sulfur (Na-S), metal-air, and flow batteries.
The last section of the C&I subsegment encompasses challenging settings, including mining, construction, oil and gas exploration, as well as outdoor festivals. The driving force behind its expansion will be customers shifting from diesel or gas generators towards eco-friendly options like BESS and hybrid generators in order to mitigate emissions. One of the primary catalysts for the increasing adoption in this sector is the implementation of forthcoming regulations, such as the European Commission's sustainability-driven Big Buyers initiative and Oslo's objective to achieve net zero on construction sites by 2025. A significant number of companies transitioning to more environmentally friendly practices will initially opt for hybrid genset solutions as an intermediate step before fully transitioning to Battery Energy Storage Systems (BESS).
In response to economic and operational challenges, there is a prevailing tendency within the industry to enhance or modify the EMS. Making the decision to retrofit the EMS carries significant weight, hence it is vital to meticulously plan the sequence of retrofitting actions. Approximately 20% of the deal flow that FlexGen handles consists of retrofits.
Exploring the realm of software is of utmost importance, particularly within the context of storage systems. It is anticipated that the value of these systems will shift from mere hardware to encompass the software that governs and enhances the overall functionality, presenting an opportunity to attract a wider customer base and achieve greater profitability. It is important for BESS players to cultivate these abilities at an early stage.
The battery management system (BMS) is frequently mistaken for the EMS. The BMS is a straightforward system that serves two purposes: 1) enabling or disabling battery operation and 2) ensuring the safety of the batteries. When initiating a BESS, the EMS will instruct the BMS to activate the batteries (establish the DC bus). The BMS will execute this command only if it detects a safe condition. During operation, if the BMS detects parameters that are exceeding their acceptable range, it will prompt the EMS to decrease power output (in cases where parameters breach fault thresholds, the BMS will activate the opening of rack contactors).
The advancements in technology are driving the growth of the market for battery energy storage systems (BESS). Battery storage plays a crucial role in supporting the generation of renewable energy, facilitating alternative sources to consistently contribute to global energy requirements despite the inherently unpredictable nature of these sources. As battery prices decrease, the versatility offered by BESS (Battery Energy Storage System) will become crucial in various areas such as peak load management, optimizing self-consumption, and providing backup power during power disruptions. These applications are progressively gaining profitability.
FlexGen's HybridOS is an advanced energy management software designed to optimize the performance and efficiency of battery energy storage systems. It integrates seamlessly with renewable energy sources, providing intelligent control, real-time monitoring, and predictive analytics to enhance energy storage and distribution.
Yes, FlexGen specializes in integrating renewable energy sources like solar and wind with their energy storage solutions. Their HybridOS software is specifically designed to manage and optimize the storage of renewable energy, ensuring a stable and efficient power supply.
FlexGen's battery storage solutions stand out due to their advanced HybridOS software, flexible hardware integration, and the ability to provide scalable, reliable, and efficient energy storage for a wide range of applications.