Large Scale EMS

Standalone BESS

With the aid of real-time visualization of energy data, they are able to promptly identify alerts and continually optimize consumption, resulting in improved speed and efficiency.

Companies like FlexGen that achieve success in implementing EMS typically have a dedicated energy manager. These managers possess the ability to overcome the inevitable challenges that arise during the implementation, which essentially involves the process of change management. Achieving assistance from upper-level management and convincing fellow members of the energy team to fulfill the commitment of implementing a methodical energy management approach has contributed to their success. Essential elements include support, guidance, and dedication from the leadership.

Energy Management Systems (EMS) enable locations equipped with solar panels on their rooftops to optimize their independence and reduce expenses. As an illustration, the EMS utilizes past energy consumption trends, predictions, and predetermined levels to guarantee that excess solar energy is not wasted but instead utilized for charging or operating additional devices like batteries or electric vehicles (EVs). In addition, it transfers surplus electricity to the grid during periods of high prices and withdraws from the grid during periods of low prices, aiming to minimize expenses. An EMS can be programmed to achieve various objectives, such as cost minimization or emission reduction.

By implementing an EMS, organizations obtain a competitive advantage in a changing energy environment marked by digitization, decarbonization, and decentralization. An EMS facilitates effective management of energy resources, the synchronization of consumption with sustainability objectives, and reduced expenses. It smoothly incorporates variable renewable energy (VRE) sources into energy systems, facilitating accelerated expansion of environmentally friendly energy initiatives and decreased dependence on fossil fuels.

Battery energy storage under the control of an EMS not only improves emission reduction by storing surplus renewable energy for use during peak demand periods, but it also facilitates data-driven decision-making. This fundamental aspect of EMS involves constant analysis of consumption patterns, enabling the identification of optimization opportunities and the reduction of emissions.

It represents an energy management system. As per the explanations of energy management system, it is software that facilitates enhanced observation, regulation, and enhancement of energy consumption for businesses within their network infrastructure and other operational segments. These tools for monitoring networks provide visual representations of energy consumption patterns. EMS aids in the identification of areas characterized by inefficiency. After identifying these areas, a diverse array of strategies can be implemented to minimize waste in the context of transmission and subtransmission networks.

Renewable Energy Plus Battery Storage

Gas and oil prices are soaring, while the difficulties in decreasing greenhouse gas emissions have never been more pressing. It is crucial for industrial organizations, actors in the tertiary sector, and local authorities to possess a deeper comprehension of energy usage. To enhance their energy management, organizations should commence by implementing an Energy Management System (EMS). It is crucial to possess a comprehensive perspective that encompasses both a worldwide outlook and specific visions for individual locations such as factories, premises, or offices.

Gas and oil prices are soaring, while the difficulties in decreasing greenhouse gas emissions have never been more pressing. It is crucial for industrial organizations, actors in the tertiary sector, and local authorities to possess a deeper comprehension of energy usage. To enhance their energy management, organizations should commence by implementing an Energy Management System (EMS). It is crucial to possess a comprehensive perspective that encompasses both a worldwide outlook and specific visions for individual locations such as factories, premises, or offices.

By implementing a system that monitors the CO2 emissions from all locations, they are able to engage their teams, monitor the decrease in their carbon footprint, and establish a consistent method for quantifying emissions throughout the entire organization.

Renewable Energy Plus Battery Storage

Large Scale EMS

By encouraging cooperation and inclusiveness, it cultivates transparency and effectiveness in the implementation of energy management procedures.

Engage in an interactive demonstration to witness firsthand how the METRON Energy Management Solution can revolutionize your organization.

FlexGen's Energy Management System (EMS) software gathers energy data, conducts a comparison of these metrics across different locations, and assesses their effectiveness in relation to industry benchmarks. The software is capable of connecting to the gas and electricity markets, enabling it to procure daily pricing information from key energy indices. Additionally, it aids in budget oversight and the ability to forecast energy expenses.

Energy Management System

Anticipate and track the load on the system by employing algorithms that dynamically link input variables, such as weather conditions.

As per the International Organization for Standardization (ISO), an energy management system encompasses the creation and execution of an energy policy, establishment of attainable energy consumption objectives, and formulation of action plans to achieve them while monitoring progress. This may entail the adoption of innovative energy-efficient technologies, reduction of energy wastage, or enhancement of existing processes to minimize energy expenses.

Anticipate and track the load on the system by employing algorithms that dynamically link input variables, such as weather conditions.

Energy Management System
hybridos
hybridos

By foreseeing the energy demands of establishments, they are able to consistently enhance energy procurement, maintain budget control, and effectively handle hedging risks.

An energy management system based on rules prioritizes the development and execution of the logic that governs the distribution of energy among interconnected Distributed Energy Resources (DERS). This system depends on predetermined guidelines and established rules to make immediate determinations regarding the allocation of energy. By implementing a rule-based approach, operational stability is guaranteed, which makes it applicable in situations where simple decision parameters can effectively achieve energy management.

By utilizing Flexgen's resilient EMS, organizations can successfully merge the demands of secure, long-lasting, and competitive IT infrastructures with their environmental goals.

BESS projects

An Energy Management System (EMS) offers live monitoring, analysis of data, measurement of key performance indicators (KPIs), and visualization of energy usage and efficiency improvements. This allows for better-informed decision-making, leading to enhanced efficiency, increased sustainability, and optimized performance throughout an entire facility.

Within the realm of e-mobility, an Energy Management System (EMS) assumes a crucial function as it facilitates dynamic load management, optimizes the charging process for improved efficiency, and enables intelligent bidirectional charging. The EMS takes an active role in overseeing the charging procedure of electric vehicles (EVs) by dynamically allocating power to minimize instances of increased demand (peak shaving). Simultaneously, it vigilantly prevents grid overloads to ensure unwavering grid stability and cost-effectiveness.

Control the timing and execution of electricity transactions that arise from the purchase and sale of energy.

BESS projects

Frequently Asked Questions

FlexGen's utility-scale energy storage solutions are innovative in their hardware-agnostic approach, allowing integration with a broad range of hardware providers. This flexibility, combined with their advanced HybridOS software, enables optimized performance, resilience, and scalability in energy storage, catering to diverse needs in the energy sector.

FlexGen's HybridOS software is designed to maximize the reliability and intelligence of battery storage systems. It offers features like advanced control modes, active protection, remote monitoring, and analytics, ensuring that energy storage systems operate efficiently and reliably even under challenging conditions.

Yes, FlexGen's energy storage solutions are capable of integration with renewable energy sources. Their HybridOS software enables the management of hybrid systems, combining solar, wind, and storage facilities, thus facilitating a smoother transition to renewable energy.

FlexGen enhances grid resilience and stability through its advanced energy storage solutions and HybridOS software. These systems provide critical grid services, such as frequency regulation, peak shaving, and demand charge reduction, thereby contributing to a more stable and resilient energy grid.

FlexGen prioritizes safety and cybersecurity in its energy storage systems. The HybridOS software complies with NERC CIP protocols, ensuring robust cybersecurity measures. Additionally, the system includes integrated controls for fire detection, prevention, and suppression, along with proactive sensory system alerts for enhanced safety.